Accurate and Efficiently Vectorized Sums and

Dot Products in Julia
Julia Paris Meetup

October 17th, 2019

Francois Févotte - TriScale innov
Chris Elrod - Baylor University

2

TRISCALE

innov

Summation & dot product

‘3 TRISCALE Accurate and Efficiently Vectorized Sums and Dot Products in Julia 2/21

Summation & dot product

Algorithm 1 Naive summation Algorithm 2 Naive dot product
o+ 0O o+ 0O
fori=1...ndo fori=1...ndo
040 +X; U(—O’+X/y/
end for end for
return o return o

‘, TRlscﬁI".og Accurate and Efficiently Vectorized Sums and Dot Products in Julia 3/21

Accuracy

nnay

‘3 TRISCALE Accurate and Efficiently Vectorized Sums and Dot Products in Julia 4/21

Accuracy of summation algorithms

Naive summation

Algorithm 3 Naive summation
o+ 0O

fori=1...ndo
o< 0+ X
end for

return o

X1 X2 X3 X4 X5 X6

Ll | AR B
e B e e (i e 4

‘, Tklsc»&l;og Accurate and Efficiently Vectorized Sums and Dot Products in Julia 5/21

Error of summation algorithms

10°
1074
A
—
: &
[}
21078
=
[}
oot
—12 |
10 A
A\ pairwise
10-16 % % % T
10° 1010 1020 1030 1040

Condition number
‘3 TRISCALE Accurate and Efficiently Vectorized Sums and Dot Products in Julia 6/21

Error of summation algorithms

10°

1074

bs TS

1078 -

Relative error

—12 |
10 é§

@
ﬁ /\ pairwise

[.
| | | L] naive
1016 x T 1 f

100 1010 1020 1030 1040
Condition number

‘3 TRISCALE Accurate and Efficiently Vectorized Sums and Dot Products in Julia 6/21

Accuracy of summation algorithms

Compensated algorithms

» For some classical algorithms, there exist “compensated”
variants :

» summation
> dot product

> polynomial evaluation
> ..

> these “‘compensated algorithms” are based on Error Free
Transforms (EFTs) :

X oy = (r,6) (Vo e {+,—x})

EFT

such that

r=|xoy]
r+d=xoy

‘; Tklsc»&l;og Accurate and Efficiently Vectorized Sums and Dot Products in Julia 7/21

Accuracy of summation algorithms

Compensated summation

Algorithm 4 Naive summation

o+ O
fori=1...ndo
o0 +X
end for
return o

X4 X5 X6

I S

‘, Tklsc»&l;og Accurate and Efficiently Vectorized Sums and Dot Products in Julia 8/21

Accuracy of summation algorithms

Compensated summation

Algorithm 7 Compensated summation

o+ 0

T+ O
fori=1...ndo
(0,€) 0 + X
EFT

T4 T+ €
end for
return o + 7

X1 X2 X3 X4 X5 X6
S I IR I

+ }_> + L+ L]+ +

EFT EFT EFT EFT EFT

[1 1 |

+ o+ +

‘,Tmsc&lﬂ.ﬂg Accurate and Efficiently Vectorized Sums and Dot Products in Julia

8/21

Error of summation algorithms

10°

1074

bs TS

1078 -

Relative error

—12 |
10 é§

@
ﬁ /\ pairwise

[.
| | | L] naive
1016 x T 1 f

100 1010 1020 1030 1040
Condition number

‘3 TRISCALE Accurate and Efficiently Vectorized Sums and Dot Products in Julia 9/21

Error of summation algorithms

100

107*

Son

._.
[an)
%
|
w

Relative error

10712 + A
g

pairwise
naive
oro

1030

Condition number
‘3 TR'SC&';,E Accurate and Efficiently Vectorized Sums and Dot Products in Julia

f
1 040

9s21

Error of summation algorithms

100

107*

Son

1078

Relative error

naive

i)
B A .
10-12 -+ é ﬁ . pairwise

1 oro

1 1 + kbn
I I f
109 1010 1020 1030 1040

Condition number
‘3 TR'SC&';,E Accurate and Efficiently Vectorized Sums and Dot Products in Julia 9/21

Performance & Vectorization (SIMD)

nnnnn

10721

Performance of summation algorithms
Vectorization (SIMD)

» Scalar operation

V4l

nnnnn

%

X1

+

%1

121

Performance of summation algorithms

Vectorization (SIMD)

> Vector operation (Single Instruction Multiple Data)

V4|

V4]

Z3

Z4

X1 Y1
X2 Y2
X3 Y3
X4 Ya

‘3 Tklsc»&l;og Accurate and Efficiently Vectorized Sums and Dot Products in Julia

» Hardware generations :

> SSE

> AVX

> AVX-2
> AVX-512

/21

Performance of summation algorithms

Naive summation, scalar version

‘3 TRISCALE Accurate and Efficiently Vectorized Sums and Dot Products in Julia

X1

X2

X3

X4

X5

X6

X7

X8

12721

Performance of summation algorithms

Naive summation, scalar version

‘3 TR'SC&';,E Accurate and Efficiently Vectorized Sums and Dot Products in Julia

X1

X2

X3

X4

X5

X6

X7

X8

12721

Performance of summation algorithms

Naive summation, scalar version

‘3 TR'SC&';,E Accurate and Efficiently Vectorized Sums and Dot Products in Julia

X1

X2

X3

X4

X5

X6

X7

X8

12721

Performance of summation algorithms

Naive summation, scalar version

‘3 TR'SC&';,E Accurate and Efficiently Vectorized Sums and Dot Products in Julia

X1

X2

X3

X4

X5

X6

X7

X8

12721

Performance of summation algorithms

Naive summation, scalar version

‘3 TR'SC&';,E Accurate and Efficiently Vectorized Sums and Dot Products in Julia

X1

X2

X3

X4

X5

X6

X7

X8

12721

Performance of summation algorithms

Naive summation, scalar version

‘3 TR'SC&';,E Accurate and Efficiently Vectorized Sums and Dot Products in Julia

X1

X2

X3

X4

X5

X6

X7

X8

12721

Performance of summation algorithms

Naive summation, scalar version

‘3 TR'SC&';,E Accurate and Efficiently Vectorized Sums and Dot Products in Julia

X1

X2

X3

X4

X5

X6

X7

X8

12721

Performance of summation algorithms

Naive summation, scalar version

‘3 TR'SC&';,E Accurate and Efficiently Vectorized Sums and Dot Products in Julia

X1

X2

X3

X4

X5

X6

X7

X8

12721

Performance of summation algorithms

Naive summation, scalar version

‘3 TR'SC&';,E Accurate and Efficiently Vectorized Sums and Dot Products in Julia

X1

X2

X3

X4

X5

X6

X7

X8

12721

Performance of summation algorithms

Naive summation, vectorized version

o1 (e
op (0]
%

o3 e
04 e

X1

X2

X3

X4

X5

X6

X7

X8

13721

Performance of summation algorithms

Naive summation, vectorized version

a1

X1

g2

X2

03

X3

04

X4

‘3 ngcﬁlﬂ.ug Accurate and Efficiently Vectorized Sums and Dot Products in Julia

a1 X1
(o) X2
03 X3
04 X4

X5

X6

X7

X8

13721

Performance of summation algorithms

Naive summation, vectorized version

a1

X1

g2

X2

03

X3

04

X4

‘3 ngcﬁlﬂ.ug Accurate and Efficiently Vectorized Sums and Dot Products in Julia

a1 X5
(o) X6
o3 X7
g4 X8

X5

X6

X7

X8

13721

Performance of summation algorithms

Naive summation, vectorized version

a1

g2

03

04

X1

X2

X3

X4

X5

‘3 ngcﬁlﬂ.ug Accurate and Efficiently Vectorized Sums and Dot Products in Julia

g1

g2

03

04

X6

X7

X8

13721

Performance of summation algorithms

Vectorized summation

» Naive

Algorithm 8 Naive summation

{Initialization :}
a«+ 0 scalar 135

variant ns/el. speedup

{Loop on vector elements '}
foricl: Ndo

a<«—adx;
end for

return a

‘; Tklsc»&l;og Accurate and Efficiently Vectorized Sums and Dot Products in Julia 14721

Performance of summation algorithms

Vecto

rized summation

Algorithm 12 Vectorized summation » Naive

1

2

10:

1L
12:
13
14:

15

- {Initialization :}

aco variant ns/el.

speedup

. {Loop on full packs 1 scalar 135
forjel:|{|do vector 017

x8

e W(—-1)+1
P (Xi, Xit1, Xit2, Xi43)
a<—aapp

. end for

. {Reduction of SIMD accumulator :}
a < vsum(a)

{Loop on remaining elements 1
forje W || +1:Ndo

A+ adx
end for

return a

‘;Tmscﬁnl".og Accurate and Efficiently Vectorized Sums and Dot Products in Julia

14721

Performance of summation algorithms

Vectorized summation

Algorithm 16 Unrolled vectorized summation .
- Tinitialization 1 » Naive
2a+ 0
3a,« 0

variant ns/el. speedup

4: {Loop on full packs, unrolled twice :}

5 forjel: || do

S W scalar 135

7 P14 (X, X4, X2, X 43)

Dy vector 017 x8

9 Re2W(E-1)+W+1
100 P2 ¢ (Xip Xip 11, Xip 425 X1p+3)
1 a4+ a®p2

12: end for
13: {Loop on remaining full packs 1 > U n rOl.l.ed
14 forje2 || +1: 4] do
=W -1)+1 .
A variant ns/el. speedup
172 a e adp
16 end for scalar 0.35
19: {Reduction of SIMD accumulators :} VeCtor 009 X 3 . 8

20 g DA
21 a < vsum(ay)

22: {Loop on remaining elements :}
23 forje W || +1:Ndo

24 A< adx

25: end for

26: return a

‘; TRISCALE Accurate and Efficiently Vectorized Sums and Dot Products in Julia 14721

Implementation
AccurateArithmetic. jl

nnnnn

15721

https://github.com/JuliaMath/AccurateArithmetic.jl

Implementation

Why Julia?
Algorithm Compensation
> Summation » Naive

» Dot product » Compensated (ORO)
» Compensated (KBN)

‘3 ngcﬁlﬂ.og Accurate and Efficiently Vectorized Sums and Dot Products in Julia

Vectorization
» Scalar
» Vectorized

» Vectorized +
unrolled

16/21

Julia implementation

Why Julia? Separation of concerns : multiple dispatch, splatting...

function sum(x)
acc = zero(eltype(x))
for e in x
acc += e
end
return acc
end

‘3 TR'SC&';,E Accurate and Efficiently Vectorized Sums and Dot Products in Julia 17721

Julia implementation

Why Julia? Separation of concerns : multiple dispatch, splatting...

sum(x) = sum_ (x, NaiveAcc)

function sum_ (x, accType)
acc = zero (accType)
for e in x
add! (acc, e)
end
return value (acc)
end

‘3 TR'SC&';,E Accurate and Efficiently Vectorized Sums and Dot Products in Julia 17721

Julia implementation

Why Julia? Separation of concerns : multiple dispatch, splatting...

sum(x, y) = acc_((x,), NaiveSum)
dot (x, y) = acc_((x,y), NaiveDot)

function acc_ (operands, accType)
acc = zero (accType)
for e in zip (operands...)
add! (acc, e)
end
return value (acc)
end

17721

Implementation

Why Julia?
Algorithm Compensation
» Summation > Naive

» Dot product » Compensated (ORO)
» Compensated (KBN)

suml (x) = acc_((x,), NaiveSum)

Vectorization
» Scalar
» Vectorized

» Vectorized +
unrolled

18721

Implementation

Why Julia?
Algorithm Compensation Vectorization
» Summation » Naive » Scalar
» Dot product ~ » Compensated (ORO) > Vectorized
» Compensated (KBN) » Vectorized +
unrolled
sum2 (x) = acc_((x,), CompSum{two_sum})

18721

Implementation

Why Julia?
Algorithm Compensation
> Summation > Naive

» Dot product » Compensated (ORO)
» Compensated (KBN)

dotl(x, y) = \
acc_((x, y), CompDot{two_sum})

Vectorization
» Scalar
» Vectorized

» Vectorized +
unrolled

18721

Implementation

Why Julia?
Algorithm Compensation Vectorization
> Summation » Naive > Scalar
» Dot product ~ » Compensated (ORO) > Vectorized
» Compensated (KBN) > Vectorized +
unrolled

dot2(x, y) =\
acc_vec((x, y), CompDot{two_sum}, Val(3))

nnnnn

18721

Julia implementation
Why Julia? Textbook-like implementation

Algorithm 17 two_ sum error-free transform
Require: (a,b) € F?
Ensure: x=a®bandx+e=a+b
X+—adb
y+xea
e—(asxey)eboy)

1 function two_sum(a::T, b::T) where {T}

2 SIMDops.(lexplicit

3

4 x =a + b

5 y = X — a

6 e =(a - (x~-y)) + (b~-y)
7 return x, e

s end

‘3 Tklsc»&l;og Accurate and Efficiently Vectorized Sums and Dot Products in Julia 19721

Julia implementation

Why Julia? Because it's fast!
L1 L2 L3 pairwise
0.8 - naive
oro

<
>
|

<
=~
|

Time [ns/elem)]

0.2

Vector size

‘3 TR'SC&';,E Accurate and Efficiently Vectorized Sums and Dot Products in Julia 20/21

Julia implementation

Why Julia? Because it's fast!

Time [ns/elem)]

oro

102 102 10% 10° 109 107
Vector size

‘3 TR'SC&';,E Accurate and Efficiently Vectorized Sums and Dot Products in Julia 20/21

Conclusions

> Julia solves the 2-language problem :

> (relatively) easy to implement (complex) algorithms
> good performance (on par with OpenBLAS)

> Browse the sources of AccurateArithmetic,jl to see how this is
really done

» www.github.com/JuliaMath/AccurateArithmetic.jl
» hal.archives-ouvertes.fr/hal-02265534

‘; Tklsc»&l;og Accurate and Efficiently Vectorized Sums and Dot Products in Julia 21721

www.github.com/JuliaMath/AccurateArithmetic.jl
hal.archives-ouvertes.fr/hal-02265534

Thanks!

Questions?

‘.Tklscﬁln.ag Accurate and Efficiently Vectorized Sums and Dot Products in Julia

22

Julia implementation
Why Julia? Because it's fast!

Performance of summation implementations

L1 L2 L3

—— pairwise

1.8 .
naive

1.6 — oro

1.4 —— kbn

Time [ns/elem]
[
|

—

102 103 10% 10° 106 107
Vector size

‘3 TR'SC&';,E Accurate and Efficiently Vectorized Sums and Dot Products in Julia

23

Julia implementation
Why Julia? Because it's fast!

Performance of dot product implementations

L1

Time [ns/elem]

Vector size

‘3 TRlscﬁlﬂ.ug Accurate and Efficiently Vectorized Sums and Dot Products in Julia

23

	Summation & dot product
	Accuracy
	Performance & Vectorization (SIMD)
	Implementation AccurateArithmetic.jl
	Annexe

