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Summation & dot product
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Summation & dot product

Algorithm 1 Naive summation Algorithm 2 Naive dot product
o+ 0O o+ 0O
fori=1...ndo fori=1...ndo
040 +X; U(—O’+X/y/
end for end for
return o return o
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Accuracy of summation algorithms

Naive summation

Algorithm 3 Naive summation
o+ 0O

fori=1...ndo
o< 0+ X
end for

return o
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Error of summation algorithms
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Error of summation algorithms
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Accuracy of summation algorithms

Compensated algorithms

» For some classical algorithms, there exist “compensated”
variants :

» summation
> dot product

> polynomial evaluation
> ..

> these “‘compensated algorithms” are based on Error Free
Transforms (EFTs) :

X oy = (r,6) (Vo e {+,—x})

EFT

such that

r=|xoy]
r+d=xoy
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Accuracy of summation algorithms

Compensated summation

Algorithm 4 Naive summation

o+ O
fori=1...ndo
o0 +X
end for
return o

X4 X5 X6
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Accuracy of summation algorithms

Compensated summation

Algorithm 7 Compensated summation

o+ 0

T+ O
fori=1...ndo
(0,€) 0 + X
EFT

T4 T+ €
end for
return o + 7

X1 X2 X3 X4 X5 X6
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Error of summation algorithms
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Error of summation algorithms
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Error of summation algorithms
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Performance & Vectorization (SIMD)
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Performance of summation algorithms
Vectorization (SIMD)

» Scalar operation

V4l
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Performance of summation algorithms

Vectorization (SIMD)

> Vector operation (Single Instruction Multiple Data)

V4|

V4]
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» Hardware generations :

> SSE

> AVX

> AVX-2
> AVX-512
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Performance of summation algorithms

Naive summation, scalar version
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Performance of summation algorithms

Naive summation, scalar version
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Performance of summation algorithms

Naive summation, scalar version
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Performance of summation algorithms

Naive summation, scalar version
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Performance of summation algorithms

Naive summation, scalar version
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Performance of summation algorithms

Naive summation, scalar version
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Performance of summation algorithms

Naive summation, scalar version
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Performance of summation algorithms

Naive summation, scalar version
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Performance of summation algorithms

Naive summation, scalar version
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Performance of summation algorithms

Naive summation, vectorized version
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Performance of summation algorithms

Naive summation, vectorized version
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Performance of summation algorithms

Naive summation, vectorized version
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Performance of summation algorithms

Naive summation, vectorized version
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Performance of summation algorithms

Vectorized summation

» Naive

Algorithm 8 Naive summation

{Initialization :}
a«+ 0 scalar 135

variant ns/el.  speedup

{Loop on vector elements '}
foricl: Ndo

a<«—adx;
end for

return a
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Performance of summation algorithms

Vecto

rized summation

Algorithm 12 Vectorized summation » Naive

1

2

10:

1L
12:
13
14:

15

- {Initialization :}

aco variant ns/el.

speedup

. {Loop on full packs 1 scalar 135
forjel:|{|do vector 017

x8

e W(—-1)+1
P (Xi, Xit1, Xit2, Xi43)
a<—aapp

. end for

. {Reduction of SIMD accumulator :}
a < vsum(a)

{Loop on remaining elements 1
forje W || +1:Ndo

A+ adx
end for

return a
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Performance of summation algorithms

Vectorized summation

Algorithm 16 Unrolled vectorized summation .
- Tinitialization 1 » Naive
2a+ 0
3a,« 0

variant ns/el.  speedup

4: {Loop on full packs, unrolled twice :}

5 forjel: || do

S W scalar 135

7 P14 (X, X4, X2, X 43)

Dy vector 017 x8

9 Re2W(E-1)+W+1
100 P2 ¢ (Xip Xip 11, Xip 425 X1p+3)
1 a4+ a®p2

12: end for
13: {Loop on remaining full packs 1 > U n rOl.l.ed
14 forje2 || +1: 4] do
=W -1)+1 .
A variant ns/el. speedup
172 a e adp
16 end for scalar 0.35
19: {Reduction of SIMD accumulators :} VeCtor 009 X 3 . 8

20 g DA
21 a < vsum(ay)

22: {Loop on remaining elements :}
23 forje W || +1:Ndo

24 A< adx

25: end for

26: return a
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Implementation
AccurateArithmetic. jl
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https://github.com/JuliaMath/AccurateArithmetic.jl

Implementation

Why Julia?
Algorithm Compensation
> Summation » Naive

» Dot product » Compensated (ORO)
» Compensated (KBN)
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Vectorization
» Scalar
» Vectorized

» Vectorized +
unrolled
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Julia implementation

Why Julia? Separation of concerns : multiple dispatch, splatting...

function sum(x)
acc = zero(eltype(x))
for e in x
acc += e
end
return acc
end
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Julia implementation

Why Julia? Separation of concerns : multiple dispatch, splatting...

sum(x) = sum_ (x, NaiveAcc)

function sum_ (x, accType)
acc = zero (accType)
for e in x
add! (acc, e)
end
return value (acc)
end
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Julia implementation

Why Julia? Separation of concerns : multiple dispatch, splatting...

sum(x, y) = acc_((x,), NaiveSum)
dot (x, y) = acc_((x,y), NaiveDot)

function acc_ (operands, accType)
acc = zero (accType)
for e in zip (operands...)
add! (acc, e)
end
return value (acc)
end
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Implementation

Why Julia?
Algorithm Compensation
» Summation > Naive

» Dot product » Compensated (ORO)
» Compensated (KBN)

suml (x) = acc_((x,), NaiveSum)

Vectorization
» Scalar
» Vectorized

» Vectorized +
unrolled

18721



Implementation

Why Julia?
Algorithm Compensation Vectorization
» Summation » Naive » Scalar
» Dot product ~ » Compensated (ORO) > Vectorized
» Compensated (KBN) » Vectorized +
unrolled
sum2 (x) = acc_((x,), CompSum{two_sum})

18721



Implementation

Why Julia?
Algorithm Compensation
> Summation > Naive

» Dot product » Compensated (ORO)
» Compensated (KBN)

dotl(x, y) = \
acc_((x, y), CompDot{two_sum})

Vectorization
» Scalar
» Vectorized

» Vectorized +
unrolled

18721



Implementation

Why Julia?
Algorithm Compensation Vectorization
> Summation » Naive > Scalar
» Dot product ~ » Compensated (ORO) > Vectorized
» Compensated (KBN) > Vectorized +
unrolled

dot2(x, y) =\
acc_vec((x, y), CompDot{two_sum}, Val(3))
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Julia implementation
Why Julia? Textbook-like implementation

Algorithm 17 two_ sum error-free transform
Require: (a,b) € F?
Ensure: x=a®bandx+e=a+b
X+—adb
y+xea
e—(asxey)eboy)

1 function two_sum(a::T, b::T) where {T}

2 SIMDops.(lexplicit

3

4 x =a + b

5 y = X — a

6 e =(a - (x~-y)) + (b~-y)
7 return x, e

s end
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Julia implementation

Why Julia? Because it's fast!
L1 L2 L3 pairwise
0.8 - naive
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Julia implementation

Why Julia? Because it's fast!

Time [ns/elem)]

oro

102 102 10% 10° 109 107
Vector size
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Conclusions

> Julia solves the 2-language problem :

> (relatively) easy to implement (complex) algorithms
> good performance (on par with OpenBLAS)

> Browse the sources of AccurateArithmetic,jl to see how this is
really done

» www.github.com/JuliaMath/AccurateArithmetic.jl
» hal.archives-ouvertes.fr/hal-02265534
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www.github.com/JuliaMath/AccurateArithmetic.jl
hal.archives-ouvertes.fr/hal-02265534

Thanks!

Questions?
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Julia implementation
Why Julia? Because it's fast!

Performance of summation implementations
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Julia implementation
Why Julia? Because it's fast!

Performance of dot product implementations

L1

Time [ns/elem]

Vector size

‘3 TRlscﬁlﬂ.ug Accurate and Efficiently Vectorized Sums and Dot Products in Julia

23



	Summation & dot product
	Accuracy
	Performance & Vectorization (SIMD)
	Implementation  AccurateArithmetic.jl 
	Annexe

