Accurate and Efficiently Vectorized Sums and Dot Products in Julia

Julia Paris Meetup

October 17th, 2019

François Févotte – TriScale innov Chris Elrod – Baylor University

Summation & dot product

Summation & dot product

Algorithm 1 Naive summation

$$\sigma \leftarrow 0$$

for
$$i = 1 \dots n$$
 do

$$\sigma \leftarrow \sigma + X_i$$

end for

return σ

Algorithm 2 Naive dot product

$$\sigma \leftarrow 0$$

for
$$i = 1 \dots n$$
 do

$$\sigma \leftarrow \sigma + x_i y_i$$

end for

return σ

Accuracy

Naive summation

Algorithm 3 Naive summation

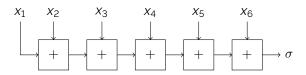
$$\sigma \leftarrow 0$$

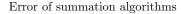
for
$$i = 1 \dots n$$
 do

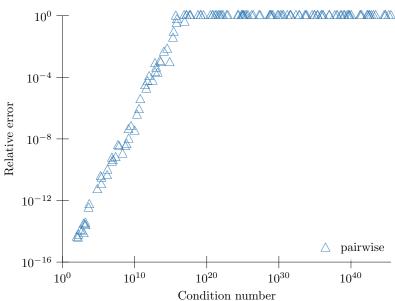
$$\sigma \leftarrow \sigma + X_i$$

end for

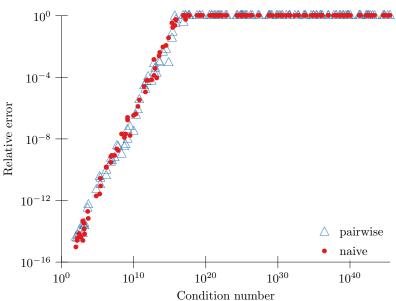
return σ











Compensated algorithms

- For some classical algorithms, there exist "compensated" variants:
 - summation
 - dot product
 - polynomial evaluation
 - **.**
- these "compensated algorithms" are based on Error Free Transforms (EFTs):

$$X \underset{\mathsf{EFT}}{\circ} y = (r, \delta)$$
 $\forall \circ \in \{+, -, \times\}$

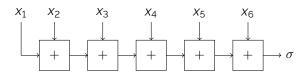
such that

$$r = \lfloor x \circ y \rceil$$
$$r + \delta = x \circ y$$

Compensated summation

Algorithm 4 Naive summation

$$\sigma \leftarrow 0$$
for $i = 1 \dots n$ do
 $\sigma \leftarrow \sigma + x_i$
end for
return σ

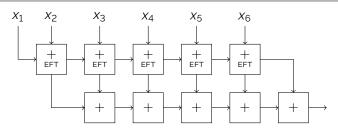


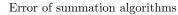
Compensated summation

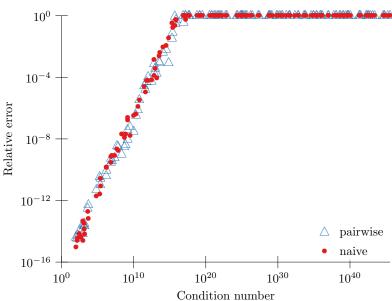
Algorithm 7 Compensated summation

$$\begin{array}{l} \sigma \leftarrow 0 \\ \pi \leftarrow 0 \\ \textbf{for } i = 1 \dots n \ \textbf{do} \\ (\sigma, e) \leftarrow \sigma + \chi_i \\ \pi \leftarrow \pi + e \\ \textbf{end for} \end{array}$$

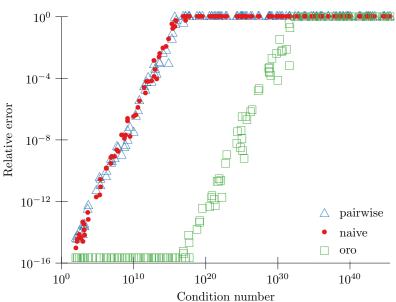
return $\sigma + \pi$



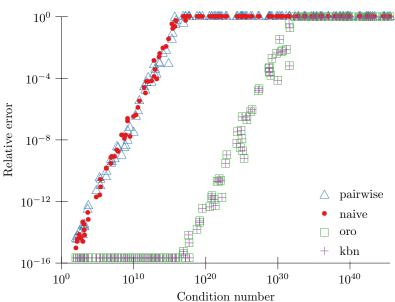




Error of summation algorithms



Error of summation algorithms



Performance & Vectorization (SIMD)

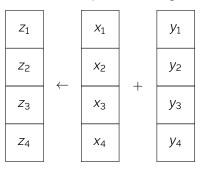
Vectorization (SIMD)

Scalar operation

$$z_1 \leftarrow x_1 + y_1$$

Vectorization (SIMD)

Vector operation (Single Instruction Multiple Data)



- Hardware generations :
 - SSE
 - AVX
 - AVX-2
 - AVX-512

Naive summation, scalar version

Naive summation, scalar version

$$\sigma \leftarrow \sigma + X_1$$

Naive summation, scalar version

$$\sigma$$
 \leftarrow σ $+$ χ_2

Naive summation, scalar version

$$\sigma$$
 \leftarrow σ $+$ χ_3

Naive summation, scalar version

$$\sigma$$
 \leftarrow σ $+$ χ_4

Naive summation, scalar version

$$\sigma \leftarrow \sigma + X_5$$

Naive summation, scalar version

$$\sigma$$
 \leftarrow σ $+$ χ_6

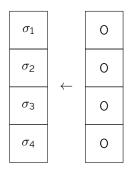
Naive summation, scalar version

$$\sigma$$
 \leftarrow σ $+$ χ_7

Naive summation, scalar version

$$\sigma \leftarrow \sigma + X_8$$

Naive summation, vectorized version



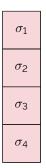
Naive summation, vectorized version

σ_1	σ_1		<i>X</i> ₁
σ_2	σ_2		<i>X</i> ₂
σ_3	σ_3	+	<i>X</i> ₃
σ_4	σ_4		<i>X</i> ₄

Naive summation, vectorized version

σ_1		σ_1		<i>X</i> ₅
σ_2		σ_2		<i>x</i> ₆
σ_3	\	σ_3	+	<i>X</i> ₇
σ_4		σ_4		<i>X</i> ₈

Naive summation, vectorized version



$$\sigma$$
 \leftarrow σ_1 $+$ σ_2 $+$ σ_3 $+$ σ_4

*X*₁

*X*₂

Х3

*X*₄

*X*₅

*X*₆

*X*₇

*X*8

Vectorized summation

Algorithm 8 Naive summation

{Initialization:}

 $a \leftarrow 0$

{Loop on vector elements:}

for $i \in 1 : N$ do

 $a \leftarrow a \oplus x_i$

end for

return a

▶ Naive

variant	ns/el.	speedup
scalar	1.35	

Vectorized summation

Algorithm 12 Vectorized summation

- 1: {Initialization:}
- 2· **a** ← 0
- 3: {Loop on full packs :}
- 4: for $j \in 1$: $\left| \frac{N}{W} \right|$ do
- 5: $i \leftarrow W(j-1)+1$
- $\mathbf{p} \leftarrow (x_i, x_{i+1}, x_{i+2}, x_{i+3})$
- $a \leftarrow a \oplus p$
- 8 end for
- 9: {Reduction of SIMD accumulator:}
- 10: $a \leftarrow vsum(a)$
- 11: {Loop on remaining elements:}
- 12: **for** $j \in W \mid \frac{N}{W} \mid +1 : N$ **do**
- 13: $a \leftarrow a \oplus x_i$
- 14 end for

15 return a

▶ Naive

×8

Vectorized summation

Algorithm 16 Unrolled vectorized summation

- 1: {Initialization :} 2: **a**₁ ← 0
- 3: **a**₂ ← 0
- 4: {Loop on full packs, unrolled twice :}
- 5: **for** $j \in 1$: $\left| \frac{N}{2 \pi k} \right|$ **do**
- 6: $i_1 \leftarrow 2W(j-1) + 1$
- 7: $\mathbf{p}_1 \leftarrow (x_{i_1}, x_{i_1+1}, x_{i_1+2}, x_{i_1+3})$
- 8: $\mathbf{a}_1 \leftarrow \dot{\mathbf{a}}_1 \oplus \mathbf{p}_1$
- 9: $i_2 \leftarrow 2W(j-1) + W + 1$
- 10: $\mathbf{p}_2 \leftarrow (x_{i_2}, x_{i_2+1}, x_{i_2+2}, x_{i_2+3})$
- 11: $\mathbf{a}_2 \leftarrow \mathbf{a}_2 \oplus \mathbf{p}_2$
- 12: end for
- 13: {Loop on remaining full packs :}
- 14: $\mathbf{for} j \in 2 \left\lfloor \frac{N}{2W} \right\rfloor + 1 : \left\lfloor \frac{N}{W} \right\rfloor \mathbf{do}$
- 15: $i \leftarrow W(j-1) + 1$
- 16: $\mathbf{p} \leftarrow (x_i, x_{i+1}, x_{i+2}, x_{i+3})$
- 17: $\mathbf{a}_1 \leftarrow \mathbf{a}_1 \oplus \mathbf{p}$
- 18: end for
- 19: {Reduction of SIMD accumulators :}
- 20: $\mathbf{a_1} \leftarrow \mathbf{a_1} \oplus \mathbf{a_2}$
- 21: $a \leftarrow vsum(a_1)$
- 22: {Loop on remaining elements:}
- 23: $\mathbf{for} j \in W\left\lfloor \frac{N}{W} \right\rfloor + 1: N \mathbf{do}$
- 24: $a \leftarrow a \oplus x_i$
- 25: end for
- 26: return a

▶ Naive

variant	ns/el.	speedup
scalar vector	1.35 0.17	×8

▶ Unrolled

variant	ns/el.	speedup
scalar vector	0.35 0.09	×3.8

Implementation AccurateArithmetic.jl

Implementation

Why Julia?

Algorithm

- Summation
- Dot product

Compensation

- Naive
- Compensated (ORO)
- Compensated (KBN)

Vectorization

- Scalar
- Vectorized
- Vectorized + unrolled

Julia implementation

Why Julia? Separation of concerns : multiple dispatch, splatting...

```
function sum(x)
  acc = zero(eltype(x))
  for e in x
    acc += e
  end
  return acc
end
```


Julia implementation

Why Julia? Separation of concerns : multiple dispatch, splatting...

```
sum(x) = sum_(x, NaiveAcc)

function sum_(x, accType)
  acc = zero(accType)
  for e in x
    add!(acc, e)
  end
  return value(acc)
end
```


Why Julia? Separation of concerns : multiple dispatch, splatting...

```
sum(x, y) = acc_((x,), NaiveSum)
dot(x, y) = acc_((x,y), NaiveDot)

function acc_(operands, accType)
  acc = zero(accType)
  for e in zip(operands...)
   add!(acc, e)
  end
  return value(acc)
end
```


Why Julia?

Algorithm

- Summation
- Dot product

Compensation

- Naive
- Compensated (ORO)
- Compensated (KBN)

- Scalar
- Vectorized
- Vectorized + unrolled

```
sum1(x) = acc_((x,), NaiveSum)
```


Why Julia?

Algorithm

- Summation
- Dot product

Compensation

- Naive
- Compensated (ORO)
- Compensated (KBN)

- Scalar
- Vectorized
- Vectorized + unrolled

```
sum2(x) = acc_((x,), CompSum\{two_sum\})
```

Why Julia?

Algorithm

- Summation
- Dot product

Compensation

- Naive
- Compensated (ORO)
- Compensated (KBN)

- Scalar
- Vectorized
- Vectorized + unrolled

```
dot1(x, y) = \\ acc_((x, y), CompDot\{two_sum\})
```


Why Julia?

Algorithm

- Summation
- Dot product

Compensation

- Naive
- Compensated (ORO)
- Compensated (KBN)

- Scalar
- Vectorized
- Vectorized + unrolled

```
dot2(x, y) = \\ acc_vec((x, y), CompDot\{two_sum\}, Val(3))
```

Why Julia? Textbook-like implementation

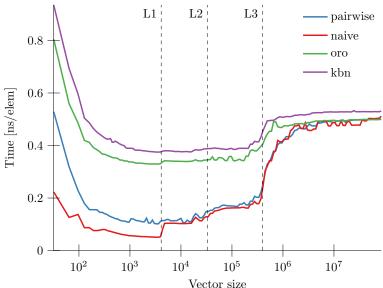
Algorithm 17 two sum error-free transform

```
Require: (a,b) \in \mathbb{F}^2
Ensure: x = a \oplus b and x + e = a + b
   x \leftarrow a \oplus b
   y \leftarrow x \ominus a
   e \leftarrow (a \ominus (x \ominus y)) \oplus (b \ominus y)
```

```
function two_sum(a::T, b::T) where {T}
      SIMDops.@explicit
3
     x = a + b
4
      v = x - a
      e = (a - (x - y)) + (b - y)
      return x, e
  end
```

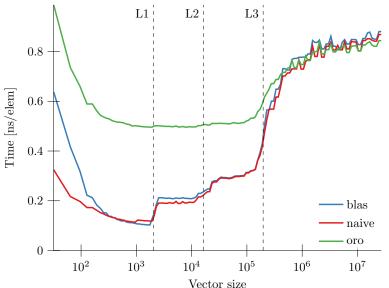

Why Julia?

Because it's fast!



Why Julia?

Because it's fast!



Conclusions

- Julia solves the 2-language problem :
 - (relatively) easy to implement (complex) algorithms
 - good performance (on par with OpenBLAS)
- Browse the sources of AccurateArithmetic.jl to see how this is really done
 - www.github.com/JuliaMath/AccurateArithmetic.jl
 - hal.archives-ouvertes.fr/hal-02265534

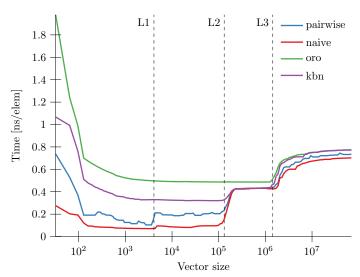
Thanks!

Questions?

Why Julia?

Because it's fast!

Performance of summation implementations



Why Julia?

Because it's fast!

Performance of dot product implementations

